大地坐标系和地理坐标系
地理坐标:为球面坐标。参考平面地是 椭球面。坐标单位:经纬度
大地坐标:为平面坐标。参考平面地是 水平面。坐标单位:米、千米等。
地理坐标转换到大地坐标的过程可理解为投影。(投影:将不规则的地球曲面转换为平面)
在ArcGIS中预定义了两套坐标系:地理坐标系(Geographic coordinate system)投影坐标系(Projected coordinate system),
1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate system是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。
Spheroid: Krasovsky_1940
Semimajor Axis: 6378245.000000000000000000
Semiminor Axis: 6356863.018773047300000000
Inverse Flattening(扁率): 298.300000000000010000
然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行:Datum: D_Beijing_1954,表示,大地基准面是D_Beijing_1954。
--------------------------------------------------------------------------------
有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。
完整参数:
Alias:
Abbreviation:
Remarks:
Angular Unit: Degree (0.017453292519943299)
Prime Meridian(起始经度): Greenwich (0.000000000000000000)
Datum(大地基准面): D_Beijing_1954
Spheroid(参考椭球体): Krasovsky_1940
Semimajor Axis: 6378245.000000000000000000
Semiminor Axis: 6356863.018773047300000000
Inverse Flattening: 298.300000000000010000
2、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐标系统中的一些参数。
Projection: Gauss_Kruger
Parameters:
False_Easting: 500000.000000
False_Northing: 0.000000
Central_Meridian: 117.000000
Scale_Factor: 1.000000
Latitude_Of_Origin: 0.000000
Linear Unit: Meter (1.000000)
Geographic Coordinate System:
Name: GCS_Beijing_1954
Alias:
Abbreviation:
Remarks:
Angular Unit: Degree (0.017453292519943299)
Prime Meridian: Greenwich (0.000000000000000000)
Datum: D_Beijing_1954
Spheroid: Krasovsky_1940
Semimajor Axis: 6378245.000000000000000000
Semiminor Axis: 6356863.018773047300000000
Inverse Flattening: 298.300000000000010000
从参数中可以看出,每一个投影坐标系统都必定会有Geographic Coordinate System。投影坐标系统,实质上便是平面坐标系统,其地图单位通常为米。
那么为什么投影坐标系统中要存在坐标系统的参数呢?这时候,又要说明一下投影的意义:将球面坐标转化为平面坐标的过程便称为投影。好了,投影的条件就出来了:
a、球面坐标
b、转化过程(也就是算法)
也就是说,要得到投影坐标就必须得有一个“拿来”投影的球面坐标,然后才能使用算法去投影!即每一个投影坐标系统都必须要求有Geographic Coordinate System参数。
关于北京54和西安80是我们使用最多的坐标系
先简单介绍高斯-克吕格投影的基本知识,我国大中比例尺地图均采用高斯-克吕格投影,其通常是按6度和3度分带投影,1:2.5万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带。具体分带法是:6度分带从本初子午线开始,按经差6度为一个投影带自西向东划分,全球共分60个投影带,带号分别为1-60;3度投影带是从东经1度30秒经线开始,按经差3度为一个投影带自西向东划分,全球共分120个投影带。为了便于地形图的测量作业,在高斯-克吕格投影带内布置了平面直角坐标系统,具体方法是,规定中央经线为X轴,赤道为Y轴,中央经线与赤道交点为坐标原点,x值在北半球为正,南半球为负,y值在中央经线以东为正,中央经线以西为负。由于我国疆域均在北半球,x值均为正值,为了避免y值出现负值,规定各投影带的坐标纵轴均西移500km,中央经线上原横坐标值由0变为500km。为了方便带间点位的区分,可以在每个点位横坐标y值的百千米位数前加上所在带号,如20带内A点的坐标可以表示为YA=20 745 921.8m。
在Coordinate Systems\Projected Coordinate Systems\Gauss Kruger\Beijing 1954目录中,我们可以看到四种不同的命名方式:
Beijing 1954 3 Degree GK CM 75E.prj:三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前不加带号
Beijing 1954 3 Degree GK Zone 25.prj:三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前加带号
Beijing 1954 GK Zone 13.prj: 六度分带法的北京54坐标系,分带号为13,横坐标前加带号
Beijing 1954 GK Zone 13N.prj:六度分带法的北京54坐标系,分带号为13,横坐标前不加带号
在Coordinate Systems\Projected Coordinate Systems\Gauss Kruger\Xian 1980目录中,文件命名方式又有所变化:
Xian 1980 3 Degree GK CM 75E.prj
Xian 1980 3 Degree GK Zone 25.prj
Xian 1980 GK CM 75E.prj
Xian 1980 GK Zone 13.prj
西安80坐标文件的命名方式、含义和北京54前两个坐标相同,但没有出现“带号+N”这种形式,为什么没有采用统一的命名方式?让人看了有些费解。
=======================================
大地坐标(Geodetic Coordinate):大地测量中以参考椭球面为基准面的坐标。地面点P的位置用大地经度L、大地纬度B和大地高H表示。当点在参考椭球面上时,仅用大地经度和大地纬度表示。大地经度是通过该点的大地子午面与起始大地子午面之间的夹角,大地纬度是通过该点的法线与赤道面的夹角,大地高是地面点沿法线到参考椭球面的距离。
方里网:是由平行于投影坐标轴的两组平行线所构成的方格网。因为是每隔整公里绘出坐标纵线和坐标横线,所以称之为方里网,由于方里线同时又是平行于直角坐标轴的坐标网线,故又称直角坐标网。
在1:1万——1:20万比例尺的地形图上,经纬线只以图廓线的形式直接表现出来,并在图角处注出相应度数。为了在用图时加密成网,在内外图廓间还绘有加密经纬网的加密分划短线(图式中称“分度带”),必要时对应短线相连就可以构成加密的经纬线网。1:2 5万地形图上,除内图廓上绘有经纬网的加密分划外,图内还有加密用的十字线。
我国的1:50万——1:100万地形图,在图面上直接绘出经纬线网,内图廓上也有供加密经纬线网的加密分划短线。
直角坐标网的坐标系以中央经线投影后的直线为X轴,以赤道投影后的直线为Y轴,它们的交点为坐标原点。这样,坐标系中就出现了四个象限。纵坐标从赤道算起向北为正、向南为负;横坐标从中央经线算起,向东为正、向西为负。
虽然我们可以认为方里网是直角坐标,大地坐标就是球面坐标。但是我们在一副地形图上经常见到方里网和经纬度网,我们很习惯的称经纬度网为大地坐标,这个时候的大地坐标不是球面坐标,她与方里网的投影是一样的(一般为高斯投影),也是平面坐标。
=======================================
GIS中的坐标系定义与转换
1. 椭球体、基准面及地图投影
GIS中的坐标系定义是GIS系统的基础,正确定义GIS系统的坐标系非常重要。GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念及它们之间的关系。
2. GIS中地图投影的定义
我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用正轴等角割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用正轴等角园柱投影,又叫墨卡托投影(Mercator),我国的GIS系统中应该采用与我国基本比例尺地形图系列一致的地图投影系统。
在城市GIS系统中均采用6度或3度分带的高斯-克吕格投影,因为一般城建坐标采用的是6度或3度分带的高斯-克吕格投影坐标。高斯-克吕格投影以6度或3度分带,每一个分带构成一个独立的平面直角坐标网,投影带中央经线投影后的直线为X轴(纵轴,纬度方向),赤道投影后为Y轴(横轴,经度方向),为了防止经度方向的坐标出现负值,规定每带的中央经线西移500公里,即东伪偏移值为500公里,由于高斯-克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,因此规定在横轴坐标前加上带号,如(4231898,21655933)其中21即为带号,同样所定义的东伪偏移值也需要加上带号,如21带的东伪偏移值为21500000米。
假如你的工作区位于21带,即经度在120度至126度范围,该带的中央经度为123度,采用Pulkovo 1942基准面,那么定义6度分带的高斯-克吕格投影坐标系参数为:(8,1001,7,123,0,1,21500000,0)。
那么当精度要求较高,实测数据为WGS1984坐标数据时,欲转换到北京54基准面的高斯-克吕格投影坐标,如何定义坐标系参数呢?你可选择WGS 1984(Mapinfo中代号104)作为基准面,当只有一个已知控制点时(见第2部分),根据平移参数调整东伪偏移、北纬偏移值实现WGS84到北京54的转换,如: (8,104,7,123,0,1,21500200,-200),也可利用 AffineTransform坐标系变换对象,此时的转换系数(A、B、C、D、E、F)中A、B、D、E为0,只有X、Y方向的平移值C、F ;当有3个已知控制点时,可利用得到的转换系数(A、B、C、D、E、F)定义 AffineTransform坐标系变换对象,实现坐标系的转换,如:(8,104,7,123,0,1,21500000,0,map.AffineTransform),其中AffineTransform定义为AffineTransform.set(7,A、B、C、D、E、F)(7表示单位米);当然有足够多已知控制点时,直接求定7参数自定义基准面就行了。